A Uniqueness Theorem for Eigenfunction Expansions
نویسندگان
چکیده
منابع مشابه
A Uniqueness Theorem for Eigenfunction Expansions.
the series on the right of (3) being called the Fourier Eigenfunction Series and a. the Fourier Coefficients of f(x, y). I have studied elsewhere' the problem of convergence and summability of a Fourier Eigenfunction Series. In this note I am interested in announcing a result on uniqueness of eigenfunction expansion. Actually, we have thfe following, THEOREM. Let us suppose we are given an eige...
متن کاملAn Equiconvergence Theorem for a Class of Eigenfunction Expansions(') By
A recent result of Muckenhoupt concerning the convergence of the expansion of an arbitrary function in terms of the Hermite series of orthogonal polynomials is generalised to a class of orthogonal expansions which arise from an eigenfunction problem associated with a second-order linear differential equation.
متن کاملOn a Watson-like Uniqueness Theorem and Gevrey Expansions
In recent decades it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.), that the formal power series solutions of a wide range of systems of ordinary (even non-linear) analytic differential equations are in fact the Gevrey expansions for the regular solutions. Watson's uniqueness theorem belongs to the foundations of this new theory. This paper contains a discussion of ...
متن کاملConvergence of Generalized Eigenfunction Expansions
We present a simplified theory of generalized eigenfunction expansions for a commuting family of bounded operators and with finitely many unbounded operators. We also study the convergence of these expansions, giving an abstract type of uniform convergence result, and illustrate the theory by giving two examples: The Fourier transform on Hecke operators, and the Laplacian operators in hyperboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1947
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.33.4.76